麻省理工学院:新工程人才应具备 12 种思维和能力

【环球网科技报道 记者 林迪】“在车间伴随着时时思考并探索和尝试的动手能力,力学的、电学的、材料的,是无法轻易被机器取代的,相反,坐办公室的工作,却很容易被机器取代。”现任清华大学未来实验室首席研究员、数字化先进制造研究中心主任、英国谢菲尔德大学智能制造专业终身教授马兆远,在其新书《人工智能之不能》中,详解了人工智能时代的新型人才应该具备哪些基本素养?即在人工智能时代,要提升创造性动手能力和培养新工程人才。

他指出,自从做了物理学教授,就越来越觉得工程的重要。我深深地觉得我们应该去找到人类与机器的差别,至少它应该影响我们今天的教育内容。谁都不想我们今天教给孩子们的技能,十几二十年后他们长大了才发现机器做得比他们要好得多。

马兆远在书中谈到,“直到有一天,跟我的导师基思·伯内特(Keith Burnett)先生聊起未来的工厂所应该营造的气氛。人们希望能够在未来工厂营造一种游戏的氛围,让年轻人以打游戏通关的心态从事创造性的工作。未来工厂也像今天的苹果公司的销售门店一样,窗明几净,有计算机设计终端,也有满地走的机器人。在这个生产场景里,人们试图创造的每一个工件甚至执行的每一个步骤,都是一个多选择的过程。这时人脑又像极了很多选择网络上行走的量子随机行走,经典计算不能够代替人类做出复杂决策,或者说至少不能像人脑一样可以有效地做出截断的判断。人工智能催化的以数字产业为主的知识研发目前还很难覆盖手工业。除了机器人制造能力的限制,其中的主要原因可能会有其他更深层次的。比如,涉及基于大量操作经验而形成的直觉,这是目前人工智能很难与人进行比照的方向。

因此,在制造业中,高级技术工人在工作过程中,所具有的结合数字化和制造业流程本身特点的技能,在人工智能时代会显得尤为重要。这就需要制造型人才不仅要懂得人工智能的计算机技术,也要懂得工业生产流程中的具体情况。

他表示,传统工程教育强调对学生进行基于学科知识的能力训练,体现出工程教育活动组织与开展的学科逻辑。由于学科逻辑过于强调学生对工程学科知识的掌握以及学生认知能力的训练,因此传统工程教育容易造成工程教育活动的开展而忽视学生个体身心发展规律,忽视学生工程实践经验构建以及工程实践中学生的组织和沟通能力的培养。

基于这些考量,麻省理工学院从 2017 年开始开展的新工程教育改革采取了整合学科逻辑与心理逻辑的策略。整合的路径体现为以研究具体问题的课题项目为线索,围绕现代产业的实践和研究方法,构建机械、材料和系统科学的跨学科内容。每个课题为学生提供了前所未有的机会,让他们沉浸在跨越学科的研究项目中,同时获得所选专业的学位。新工程教育的教学方式发生了变革,强调以学生为本,关注学生的学习方式和学习内容,把学生真正置于工程教育活动的中心。不仅重视知识的获取,而且重视应用知识的能力。项目是学习制造、发现、系统和创造力的主要工具,它有助于促进学生从团队技能到人际关系技能再到领导能力的提升。

人工智能对生产效率的提高会使得产业界更加注重工程人才的学习能力和思维等方面的表现,原来强调以知识习得为重心的教育体系将会受到挑战。新工程教育应更注重对学生思维的培养,从而让学生在工程实践中面临各种未知与复杂问题时能够运用恰当的思维去思考、解决问题。

为此,麻省理工学院提出新工程人才应具备 12 种思维和能力:

1、学习如何学习(Learning how to learn):学生利用一定的认知方法主动思考和学习。

2、制造(Making):新工程人才发现和创造出新事物的能力。

3、发现(Discovering):一种通过采取探究、验证等方式促进社会及世界知识更新,并能产生新的根本性的发现和技术的能力。

4、人际交往技能(Interpersonal skills):一种能够与他人合作并理解他人的能力,包含沟通、倾听、对话、参与和领导团队的工作等。

5、个人技能与态度(Personal skills and attitudes):包含主动、有判断力、有决策力、有责任感、有行动力以及灵活、自信、遵守道德、保持正直、能终身学习等品质。

6、创造性思维(Creative thinking):一种通过深入思考,能够提出和形成新的、有价值主张的思维。

系统性思维(Systems thinking):在面对复杂的、混沌的、同质的、异质的系统时,学生能够进行综合性、全局性的思考。

8、批判与元认知思维(Critical and metacognitive thinking):一种能够对经由观察、体验、交流等方式所收集到的信息进行分析与判断, 以评估其价值及正确度的思维。

9、分析性思维(Analytical thinking):一种能够对事实、问题进行分解,运用理论、模型、数理分析,明确因果关系并预测结果的思

10、计算性思维(Computational thinking):一种能够把基础性的计算程序(例如抽象、建模等)以及数据结构、运算法则等用于对物理、生物及社会系统的理解的思维。

11、实验性思维(Experimental thinking):一种能够开展实验获取数据的思维,包含选择测评方法、程序、建模及验证假设等内容。

12、人本主义思维(Humanistic thinking):学生能够形成并运用对人类社会及其传统、制度和艺术表达方式的理解,掌握人类文化、人文思想和社会政治经济制度的知识。

注:本文整理自马兆远所著《人工智能之不能》(中信出版社2020年3月)