【前沿速递】南方科技大学王培毅教授联合研究团队揭示新冠流行变异毒株Omicron和Delta入侵机制

近日,南方科技大学王培毅教授团队联合中国科学院微生物研究所等单位,在国际顶级学术期刊Cell杂志在线发表了“Receptor binding and complex structures of human ACE2 to spike RBD from Omicron and Delta SARS-CoV-2”的研究论文,研究团队首次解析了新冠病毒两个关键突变株Omicron 和Delta RBD区(关键受体结合区)与人ACE2(hACE2)的复合物结构,阐明了其相互作用的分子机制。
图片
COVID-19 大流行在世界范围内继续流行,并出现了许多突变株,这些突变株使得疫苗效力减弱、康复者面临再次感染风险,进而使疫情形势愈发严重、复杂,严重影响到人们日常的社会活动。新冠病毒突变株OmicronDelta目前是世界卫生组织定义的五种“关切变异株(VOC)”中最重要的两种。Omicron已在128个国家和地区出现,因此引起了全球广泛关注,其突变株刺突S蛋白上最关键的受体结合域RBD携带高达15个氨基酸突变,涵盖了Alpha、Beta、Gamma突变株具备的所有特征。Delta变异株是迄今发现的最具传播性的新冠变异株。深入理解Omicron和Delta突变株的识别受体和入侵细胞的机制是疫苗和药物研发的关键基础。
研究团队首先通过流式细胞分析、表面等离子共振和假病毒入侵实验等定性、定量的研究方法,评估了五种VOC与hACE2的结合能力和假病毒感染能力。研究团队发现,与新冠病毒原型毒株(GISAD: EPI_ISL_402119)相比,Omicron 和Delta突变株的RBD与hACE2的结合能力没有明显变化。为进一步探明Omicron RBD 和Delta RBD 与hACE2相互作用的分子机制,研究团队解析了Omicron RBD/hACE2复合物的冷冻电镜结构(3.4 Å)和X-射线晶体结构(3.0 Å),同时还获得了Delta RBD/hACE2复合物的X-射线晶体结构(3.35 Å)。
图片
(Omicron RBD 和Delta RBD与hACE2复合物结构)
结构分析表明,Omicron RBD上的Q493R和Q498R的突变使其周围的相互作用网络发生了重排,K417N, G446S, E484A, G496S和 Y505H突变均削弱了Omicron RBD与hACE2的结合能力,N501Y的突变使其与hACE2上的Y41位形成 π-π相互作用而增强其与hACE2的亲和力。DeltaRBD上的两个突变位点,L452R和T478K,从结构上看,两个位点不影响其与hACE2的结合,但是可能会影响抗体的结合,对部分现有抗体产生免疫逃逸。
本研究揭示了目前最受关注的两个新冠突变株Omicron和Delta的RBD与hACE2相互作用的分子机制,为疫苗研发和药物筛选奠定了分子基础。