从星尘到暗淡蓝点:宇宙中的碳元素如何来到地球|SCI ADV&PNAS

图片
来源 密歇根大学
翻译 阿金
审校 戚译引
天文学家卡尔·萨根有句名言:我们都是星尘。而包括美国密歇根大学(University of Michigan)在内的两个研究团队分别发现,这可能比我们先前认为的更真实。
第一项研究来自密歇根大学的 Jie Li 团队,发表在《科学进展》(Science Advances)期刊上。该研究表明,地球上的大部分碳很可能来自于星际物质,即存在于星系各恒星之间的太空物质。这很可能发生在原行星盘(protoplanetary disk)形成和升温一段时间之后。原行星盘是尘埃和气体形成的云团,环绕我们年轻的太阳,其中蕴含着构成行星的基本成分 。
碳可能是在太阳诞生后一百万年之内形成了固体物质,这意味着作为地球生命基石的碳元素跨越星际之旅,顺利抵达我们的星球。
此前,科学家认为地球上的碳来自最初存在于星云气体中的分子,当气体冷却到足以沉积之时,被岩石行星吸收。Li的团队成员包括密歇根大学的天文学家 Edwin Bergin、加州理工学院(California Institute of Technology)的 Geoffrey Blake、芝加哥大学( University of Chicago)的 Fred Ciesla 和明尼苏达大学(University of Minnesota)的 Marc Hirschmann,他们在研究中指出,携带碳的气体分子无法参与地球的构建,因为一旦碳元素蒸发出去,就不会再凝聚形成固体。
“凝聚模型(condensation model)在过去几十年中应用广泛。该模型假设,太阳形成过程中,组成的所有行星元素得到蒸发,随着原行星盘冷却下来,一些气体凝聚起来,为固态天体提供化学成分。但这模型不适用于碳元素。”Li 讲道,她是密歇根大学地球和环境科学系教授。
许多碳以有机分子的形式进入星盘。然而,一旦碳元素蒸发,它就会形成挥发性强得多的物质,需要极低的温度才能重新形成固体。更重要的是,碳元素不会再凝聚形成有机物形式。因此,Li 和团队推测,地球上的大部分碳可能直接来自于星际物质,完全不经过蒸发过程。
为了更好理解地球如何获得碳元素,Li 估算了地球的最高含碳量。为此,她比较了地震波穿过地核的速度和已知的地核内声速。结果表明,碳元素占据了不到 0.5% 的地球质量。理解地球碳含量的可能上限让研究人员知道碳元素何时抵达地球。
“我们提出了一个与众不同的问题:我们追问地核能容纳多少碳,同时仍能与所有常数保持一致。”Bergin解释说,“这里有不确定因素。不过让我们接受这一不确定性,寻找地球最深处碳含量的真正上限,结果会告诉我们身处的真实环境。”Bergin是密歇根大学天文系教授和系主任。
行星碳含量必须比例适中,才能维持生命存在。如果碳太多,地球大气层就就会像金星一样,来自太阳的热量无法扩散到外界,让行星温度保持在 880 华氏度(约 471 摄氏度)左右。如果碳太少,地球就会像火星一样成为一片不毛之地:无法支持基于水的生命存在,温度保持在零下 60 华氏度(零下 51 摄氏度)。
第二项研究来自同一作者团队,但由明尼苏达大学地球和环境科学教授 Hirschmann 领导。研究人员调查了行星的小型前体——微行星(planetesimal)在早期形成过程中保留碳的同时如何处理碳。他们检查了这些如今作为铁陨石留存下来的天体内的金属内核,发现在行星起源的关键时刻,随着微行星的融化,大部分碳必定会流失,形成地核,并损失气体。Hirschmann 表示,这颠覆了以前的理论。
“大部分模型认为,碳和水、氮等其他生命必需物质脱胎于星云,进入原始岩石天体内,然后落入不断成长的行星,例如地球或者火星。”Hirschmann 解释说,“但这跳过了关键一步,微行星在被行星吸收之前已在这一步流失了大部分碳。”
Hirschmann 的研究近期发表在《美国国家科学院院刊》(PNAS)。
“行星需要碳来调节自身气候,让生命得以存在,但这其中有微妙的平衡。”Bergin 说,“你不想要碳过少,但也不需要太多。”
Bergin 表示,两项研究都描述了碳流失的两大不同方面,而碳流失似乎是将地球建设为宜居行星的核心。
“只有联合像天文学和地球化学这样的学科,才能帮忙回答宇宙其他地方是否存在类地球行星,”加州大学的地球物理科学教授 Ciesla 说道,“虽然不同领域的研究人员采用的方法、所要回答的专业问题不尽相同,但构建一段连贯的历史要求首先确定共同感兴趣的话题,找到方法弥合其中的知识鸿沟。这种做法很有挑战,但这项工作也是鼓舞人心、回报丰厚的。”
加州理工的宇宙化学、行星科学和化学教授 Blake 是这两项研究的合作者,他说这样的跨学科研究很关键。
“仅仅就我们星系的历史而言,围绕类似太阳一样的恒星形成像地球一样或者更大一些的岩石行星,这一过程已经发生过数亿次,”他说,“我们能不能扩展这项研究,在更大范围内检验行星系统的碳损失问题呢?像这样的研究将需要集结更多元的科学家。”
论文信息 1
【论文题目】Earth’s carbon deficit caused by early loss through irreversible sublimation
【论文作者】J. Li, E. A. Bergin, G. A. Blake, F. J. Ciesle and M. M. Hirschmann
【发表时间】2021 年 4 月 2 日
【发表期刊】Science Advances
【论文编号】10.1126/sciadv.abd3632
【论文链接】https://advances.sciencemag.org/content/7/14/eabd3632
【论文摘要】Carbon is an essential element for life, but its behavior during Earth’s accretion is not well understood. Carbonaceous grains in meteoritic and cometary materials suggest that irreversible sublimation, and not condensation, governs carbon acquisition by terrestrial worlds. Through astronomical observations and modeling, we show that the sublimation front of carbon carriers in the solar nebula, or the soot line, moved inward quickly so that carbon-rich ingredients would be available for accretion at 1 astronomical unit after the first million years. On the other hand, geological constraints firmly establish a severe carbon deficit in Earth, requiring the destruction of inherited carbonaceous organics in the majority of its building blocks. The carbon-poor nature of Earth thus implies carbon loss in its precursor material through sublimation within the first million years.
论文信息 2
【论文题目】Early volatile depletion on planetesimals inferred from C–S systematics of iron meteorite parent bodies
【论文作者】Marc M. Hirschmann, Edwin A. Bergin, Geoff A. Blake, Fred J. Ciesla, and Jie Li
【发表时间】March 30, 2021
【发表期刊】Proceedings of the National Academy of Sciences
【论文编号】10.1073/pnas.2026779118
【论文链接】https://www.pnas.org/content/118/13/e2026779118
【论文摘要】During the formation of terrestrial planets, volatile loss may occur through nebular processing, planetesimal differentiation, and planetary accretion. We investigate iron meteorites as an archive of volatile loss during planetesimal processing. The carbon contents of the parent bodies of magmatic iron meteorites are reconstructed by thermodynamic modeling. Calculated solid/molten alloy partitioning of C increases greatly with liquid S concentration, and inferred parent body C concentrations range from 0.0004 to 0.11 wt%. Parent bodies fall into two compositional clusters characterized by cores with medium and low C/S. Both of these require significant planetesimal degassing, as metamorphic devolatilization on chondrite-like precursors is insufficient to account for their C depletions. Planetesimal core formation models, ranging from closed-system extraction to degassing of a wholly molten body, show that significant open-system silicate melting and volatile loss are required to match medium and low C/S parent body core compositions. Greater depletion in C relative to S is the hallmark of silicate degassing, indicating that parent body core compositions record processes that affect composite silicate/iron planetesimals. Degassing of bare cores stripped of their silicate mantles would deplete S with negligible C loss and could not account for inferred parent body core compositions. Devolatilization during small-body differentiation is thus a key process in shaping the volatile inventory of terrestrial planets derived from planetesimals and planetary embryos.
点个“在看”,分享给更多的小伙伴