FOE|Te与Se合金化,实现带隙连续可调:低成本太阳能电池的最新探索

本文来自“光电子学前沿”,文章仅代表作者观点,与“科研圈”无关。
第一作者:郑佳佳
通讯作者:陈超
通讯单位:华中科技大学
研究背景
从1959年到2020年,全球碳排放量逐年增加,导致气温大幅上升、极端气候和自然灾害频发。中国作为世界上最大的碳排放国,国家主席习近平在2020年提出了双碳目标愿景,旨在实现更清洁的能源组合,其中太阳能的开发利用具有战略意义。太阳能电池作为一种高效利用太阳能的成熟技术,经历了三代的发展。第一代是晶体硅太阳能电池、第二代是以CIGS和CdTe为代表的薄膜太阳能电池,第三代是以有机聚合物电池、量子点电池、钙钛矿电池等为代表的新型太阳能电池。然而,上述太阳能电池仍面临制备复杂、成本高、毒性大、稳定性差等问题,尚未得到有效解决。
文章简介
硒(Se)是一种半导体材料,具有无毒、空气稳定性好、吸收系数大(>104cm−1) 和制备温度低等优点,在光伏应用方面具有巨大潜力。然而,Se的带隙为1.8 eV,不在单结太阳能电池的最佳带隙范围内(1−1.5 eV),这限制了Se太阳能电池效率的进一步提升。
图文导读
创新点一:Te与Se合金化实现带隙连续可调
研究团队将混合均匀的Se1-xTex(x=0.2、0.3、0.4和0.5)粉末作为蒸发源,采用热蒸发[如图1(a)所示]制备Se1-xTex薄膜。如图1(d)所示,Se1-xTex薄膜的XRD峰随x的增加,往小角度偏移;Tauc法拟合出其带隙与x呈线性关系,如图1(e)和(f)所示。当x=0.3时,Se1-xTex薄膜的带隙为1.36eV,对应太阳能电池的Shockley-Queisser(S-Q)极限效率最大,表现出极大的应用潜力。如图1(b)和(c)所示,热蒸发制备的Se0.7Te0.3薄膜表现出较好的结晶性与致密性,满足制备高效太阳能电池的要求。
图片
图1 (a)热蒸发示意图;(b)退火前后Se0.7Te0.3薄膜的XRD扫描谱;(c)退火后Se0.7Te0.3薄膜的SEM图像;(d)Se1-xTex薄膜的(102)衍射峰;(e)Tauc法拟合Se1-xTex薄膜的带隙;(f)Se1-xTex薄膜的带隙与x的函数关系
创新点二:电子传输层ZnO可与Se成键,增强界面粘附性
为了增强功能层之间的粘附性,研究团队通过吉布斯自由能计算发现ZnO与Se在200℃的退火温度下可反应,从而增强ZnO与Se0.7Te0.3的粘附性[如图2(c)所示],并且减少界面悬挂键,一定程度上可改善界面复合。如图2(b)所示,ZnO与Se0.7Te0.3之间会形成一层很薄的ZnSe层,作为电子传输的过渡层。最终,基于ITO/ZnO/Se0.7Te0.3/Au器件获得了1.85%的光电转换效率。
图2 (a)Se0.7Te0.3太阳能电池的结构图;(b)ITO/ZnO/Se0.7Te0.3/Au太阳能电池的能级图;(c)横截面的SEM图像
总结和展望
研究团队将30%Te与70%Se合金化,使Se1-xTex的带隙调整到S-Q极限的最佳值(1.36 eV)。另外,ZnO电子传输层暴露于表面的Zn2+在退火过程中会与Se结合,形成高质量的ZnO/Se1-xTex异质结界面。最终ITO/ZnO/Se0.7Te0.3/Au器件实现了1.85%的光电转换效率,且通过减少ZnO/Se0.7Te0.3界面和Se0.7Te0.3薄膜的缺陷,有望进一步提升器件的效率。该研究证实了ZnO/Se0.7Te0.3太阳能电池结构的可行性,为实现稳定、高效和绿色Se1-xTex太阳能电池奠定了基础。
作者介绍
图片
唐江,华中科技大学武汉光电国家研究中心教授,基金委杰出青年基金获得者。2003年本科毕业于中国科学技术大学,2010年博士毕业于加拿大多伦多大学,2011年进IBM沃森研究总部进行博士后研究,2012年加入华中科技大学任教授。唐江教授专注于新型光电转换材料与器件研究,率先开展新型硒化锑薄膜太阳能电池研究,制备出低检测限Cs2AgBiBr6单晶X射线探测器和高荧光产率单基质Cs2NaAgInCl6白光荧光粉。近5年来以通讯作者身份发表包括Nature、Nature Photonics、Nature Energy、Nature Communications等在内的文章100余篇,累计被引用超过一万次。目前致力于硒化锑薄膜太阳能电池、X射线探测与成像,钙钛矿发光材料与器件研究。
图片
陈超,华中科技大学光学与电子信息学院副教授,主要研究方向包括无机薄膜太阳能电池和红外光电探测器。曾获国家自然科学基金面上项目、国家自然科学基金青年基金、博新计划、中国博士后面上基金等项目或人才计划资助。近五年来,以第一作者(含共同)或通讯作者(含共同)发表包括Nature Energy、Nature Communications、Chemical Reviews、Advanced Materials、Advanced Energy Materials、ACS Energy Letters、Nano Energy在内的高水平论文。目前论文总被引近4000次,h因子31(Google Scholar数据)。
课题组简介
本课题组成立于2012年,主要专注于新型光电转换材料与器件研究,希望做科学上有新意,技术上有前景的应用基础研究,以不辜负纳税人的钱和学生老师的年华。课题组重视学生的科研基本功,强调全面发展,倡导以学生为本的管理理念,努力营造快乐舒适的科研实验环境。诚邀对科研有热情有追求的同学加入我们,光电物理材料化学背景的都欢迎!
摘要:
Selenium (Se) element is a promising light-harvesting material for solar cells because of the large absorption coefficient and prominent photoconductivity. However, the efficiency of Se solar cells has been stagnated for a long time owing to the suboptimal bandgap (> 1.8 eV) and the lack of a proper electron transport layer. In this work, we tune the bandgap of the absorber to the optimal value of Shockley–Queisser limit (1.36 eV) by alloying 30% Te with 70% Se. Simultaneously, ZnO electron transport layer is selected because of the proper band alignment, and the mild reaction at ZnO/Se0.7Te0.3 interface guarantees a good-quality heterojunction. Finally, a superior efficiency of 1.85% is achieved on ZnO/Se0.7Te0.3 solar cells.
期刊简介
其宗旨是介绍国际光电子领域最新研究成果和前沿进展,并致力成为本领域内研究人员与国内外同行进行快速学术交流的重要信息平台。该刊的联合主办单位是高等教育出版社、华中科技大学和中国光学学会,承办单位是武汉光电国家研究中心。FOE期刊已被Emerging Sources Citation Index (ESCI), Ei Compendex, SCOPUS, INSPEC, Google Scholar, CSA, Chinese Science Citation Database (CSCD), OCLC, SCImago, Summon by ProQuest等收录。2019年入选中国科技期刊卓越行动计划梯队期刊项目。
图片
《前沿》系列英文学术期刊