看点 在教学的路上,常常会出现孩子无法理解知识,以至于作业、试题频频出错的情况,如何让孩子将新的知识理解透彻?在浙江金华师范学校附属小学校长看来,学生的学习之“痛”,往往是缘于教学之“错”。
文丨俞正强 编丨袁梓曦
在教书成长的经历中,我觉得自己最值得感恩的是,终于有一天体会到,学生的学习之“痛”,往往是缘于我们的教学之“错”。自此之后我便深刻地理解了,先把课上“对”是多么重要。
学习之“痛”的归因
在没有体会到这一点之前,我都会把学生的学习之“痛”,归因为学生上课没听,上课不专心,或者智商低,父母生得不够聪明,或者时间花得不够等等,总是理直气壮地指责学生,批评学生,兼而去抱怨家长。
老师的理直气壮,让孩子们总是不自觉地归因为自己笨,怎么老是搞错?“错”到后来变成“怕”,怕了也逃不掉,就成了“痛”。而且,这种“痛”平时是钝的,但在某些瞬间会是尖锐的。
对于老师而言,因为理直气壮,所以从来不会去思考自己如何改善,始终如一地要求孩子“细心”点、“聪明”点、“专心”点。这种单向的、居高而下的要求,十分满足我们的职业体验。
在我的职业生涯早期,这种理直气壮的体验让我过得心安理得,经常抱怨,抱怨孩子笨,抱怨家长不管,抱怨待遇低,直到有一天,当我明白了孩子的“痛”与我们的“错”之间的关系后,才深深地自责起来,为自己从前对孩子的许多责训开始变得内疚,才会去思考如何上“对”课,如何用我们的教学之“对”,去给孩子没有“痛”的学习之旅。
教学之“错”的感悟
这个体会源于当年对四年级学生的补课。
当时的小学还是五年制,所以四年级有需要用方程解的应用题(当时称应用题,现在叫问题解决)。照理而言,用方程解决问题比用算术方法解决问题来的方便,学生又是十分喜欢偷懒的,应该十分喜欢用方程来解决问题,可事实上,大多数学生十分排斥用方程解决问题,他们就是喜欢用算术方法解决问题。
我总是批评学生,批评学生不思进取,或者是“笨”,比方设谁为x总是出差错,最后会教给孩子们一个简单有效的秘诀“求谁,就设谁为x”。
但这个秘诀一旦碰到设中间量为x的时候,秘诀便成了障碍,我为此苦恼不已。
一天中午,为设谁为x这个问题,给一位学生补课,补课补得十分气恼,因为当天下午地方上有个教研活动,于是,在没有补完课,其实也永远补不好的课之后,匆匆跑去参加教研活动,听一节公开课,这节公开课是《用字母表示数》,这节课的教学流程与我平时上的过程是一样的:
师:同学们,你们猜老师今年几岁啊?
生:……
师:同学们,老师比大家大21岁,老师几岁啊?
生:老师32岁
师:为什么呀?
生:因为我们今年11岁。
师:那明年呢?
生:老师33岁
师:那后年呢?
生:老师34岁
师:再后年呢?同学们,这样说的完吗?
生:说不完。
师:说不完怎么办呢?
生:用字母来表示,因为字母可以表示所有数。
这个过程形成如下板书:
认识一:确定的数用数字来表示。不确定的数用字母来表示。
认识二:不同的对象用不同的字母来表示。
认识三:当两个量之间有关系时,其中一个对象可以用字母式来表示。
师:(抖抖信封)信封里有东西吗?没有。可以用那个数字来表示?
生:略
师:(装进一根粉笔)现在可以用哪个数来表示?确定吗?肯定吗?唯一吗?为什么这么肯定?
生:略
师:(倒出来后装进三根粉笔)现在可以用哪个数字表示?确定吗?肯定吗?唯一吗?为什么这么肯定的?
生:略
师:(倒出三根粉笔,躲到讲台下面往信封里装粉笔,然后起身问学生)现在可以用哪个数字来表示呢?
生:略
师:为什么有这么多不同的答案?刚才发生什么事了?
生:略
师:因为老师躲起来放,同学们没看见,所以不确定,于是有了这么多不同的答案。但大家为什么没人说0呢?
生:略
师:不是0这件事可以确定,还可以确定什么?
生:略
师:同学们,今天我们遇到了新情况,就是我不知道是几,但知道在几和几之间,这种情况,无法用一个数字来表示,于是我们就用字母来表示。
这个教学过程,形成如下板书:
师:同学们,8加7等于多少?
板书:8+7=15
生:略
师:同学们,7加8等于多少?
板书:7+8=15
生:略
师:(指着板书)同学们,大家有什么规律发现?
生:一脸的懵
师:(指着板书)
8+7=15
7+8=15
难道大家没有发现两个数交换位置和不变吗?
在审视中猛然发现自己是教的多么愚蠢。8+7=7+8,这里有规律吗?我为什么要去发现这样的规律?这也算规律吗?定律是规律吗?
关注外滩教育
发现优质教育